159 research outputs found

    The use of time-resolved fluorescence imaging in the study of protein kinase C localisation in cells

    Get PDF
    Background: Two-photon-excitation fluorescence lifetime imaging (2P-FLIM) was used to investigate the association of protein kinase C alpha (PKCα) with caveolin in CHO cells. PKCα is found widely in the cytoplasm and nucleus in most cells. Upon activation, as a result of increased intracellular Ca2+ and production of DAG, through G-protein coupled-phospholipase C signalling, PKC translocates to a variety of regions in the cell where it phosphorylates and interacts with many signalling pathways. Due to its wide distribution, discerning a particular interaction from others within the cell is extremely difficult. Results: Fluorescence energy transfer (FRET), between GFP-PKCα and DsRed-caveolin, was used to investigate the interaction between caveolin and PKC, an aspect of signalling that is poorly understood. Using 2P-FLIM measurements, the lifetime of GFP was found to decrease (quench) in certain regions of the cell from ~2.2 ns to ~1.5 ns when the GFP and DsRed were sufficiently close for FRET to occur. This only occurred when intracellular Ca2+ increased or in the presence of phorbol ester, and was an indication of PKC and caveolin co-localisation under these conditions. In the case of phorbol ester stimulated PKC translocation, as commonly used to model PKC activation, three PKC areas could be delineated. These included PKCα that was not associated with caveolin in the nucleus and cytoplasm, PKCα associated with caveolin in the cytoplasm/perinuclear regions and probably in endosomes, and PKC in the peripheral regions of the cell, possibly indirectly interacting with caveolin. Conclusion: Based on the extent of lifetime quenching observed, the results are consistent with a direct interaction between PKCα and caveolin in the endosomes, and possibly an indirect interaction in the peripheral regions of the cell. The results show that 2P-FLIM-FRET imaging offers an approach that can provide information not only confirming the occurrence of specific protein-protein interactions but where they occur within the cell

    New Approaches to Photodynamic Therapy from Type I, II and III to Type IV Using One or More Photons

    Get PDF
    Photodynamic therapy (PDT) is an alternative cancer treatment to conventional surgery, radiotherapy and chemotherapy. It is based on activating a drug with light that triggers the generation of cytotoxic species that promote tumour cell killing. At present, PDT is mainly used in the treatment of wet age-related macular degeneration, for precancerous conditions of the skin (e.g. actinic keratosis) and in the palliative care of advanced cancers, for instance of the bladder or the oesophagus. PDT is still not used as a first line cancer treatment, which is surprising given the first clinical trials by Dougherty’s group dating back to the 1970’s. PDT has significant advantages over surgery or radiation therapy for low lying tumours due to better cosmetic outcome and localised treatment for the patients. However, despite these advantages and significant developments in optical technology that has enabled light penetration to deeper lying tumours, in excess of 5 cm, a lack of phase III clinical trials has slowed down the uptake of PDT by the healthcare sector as a frontline treatment in cancer. However research continues to demonstrate the potential benefits of PDT and the need to stimulate funding and uptake of clinical studies using next generation photosensitizers offering advanced targeted delivery, improved photodynamic dose combined with modern light delivery technologies. This review surveys the available PDT treatments and emerging novel developments in the field with a particular focus on two-photon techniques that are anticipated to improve the effectiveness of PDT in tissues at depth and on next generation drugs that work without the need of the presence of oxygen for photosensitization making them effective where hypoxia has taken hold

    Combining Multicolor FISH with Fluorescence Lifetime Imaging for Chromosomal Identification and Chromosomal Sub Structure Investigation

    Get PDF
    Understanding the structure of chromatin in chromosomes during normal and diseased state of cells is still one of the key challenges in structural biology. Using DAPI staining alone together with Fluorescence lifetime imaging (FLIM), the environment of chromatin in chromosomes can be explored. Fluorescence lifetime can be used to probe the environment of a fluorophore such as energy transfer, pH and viscosity. Multicolor FISH (M-FISH) is a technique that allows individual chromosome identification, classification as well as assessment of the entire genome. Here we describe a combined approach using DAPI as a DNA environment sensor together with FLIM and M-FISH to understand the nanometer structure of all 46 chromosomes in the nucleus covering the entire human genome at the single cell level. Upon DAPI binding to DNA minor groove followed by fluorescence lifetime measurement and imaging by multiphoton excitation, structural differences in the chromosomes can be studied and observed. This manuscript provides a blow by blow account of the protocol required to perform M-FISH-FLIM of whole chromosomes

    The dynamics of the relay loop tryptophan residue in the Dictyostelium myosin motor domain and the origin of spectroscopic signals.

    Get PDF
    Steady-state and time-resolved fluorescence measurements were performed on a Dictyostelium discoideum myosin II motor domain construct retaining a single tryptophan residue at position 501, located on the relay loop. Other tryptophan residues were mutated to phenylalanine. The Trp-501 residue showed a large enhancement in fluorescence in the presence of ATP and a small quench in the presence of ADP as a result of perturbing both the ground and excited state processes. Fluorescence lifetime and quantum yield measurements indicated that at least three microstates of Trp-501 were present in all nucleotide states examined, and these could not be assigned to a particular gross onformation of the motor domain. Enhancement in emission intensity was associated with a reduction of the contribution from a statically quenched component and an increase in a component with a 5-ns lifetime, with little change in the contribution from a 1-ns lifetime component. Anisotropy measurements indicated that the Trp-501 side chain was relatively immobile in all nucleotide states, and the fluorescence was effectively depolarized by rotation of the whole motor domain with a correlation time on 50-70 ns. Overall these data suggest that the backbone of the relay loop remains structured throughout the myosin ATPase cycle but that the Trp-501 side chain experiences a different weighting in local environments provided by surrounding residues as the adjacent converter domain rolls around the relay loop

    Nanoscale hydroxyl radical generation from multiphoton ionization of tryptophan

    Get PDF
    Exposure of solutions containing both tryptophan and hydrogen peroxide to a pulsed (~180 fs) laser beam at 750 nm induces luminescence characteristic of 5 hydroxytryptophan. The results indicate that 3-photon excitation of tryptophan results in photoionization within the focal volume of the laser beam. The resulting hydrated electron is scavenged by the hydrogen peroxide to produce the hydroxyl radical. The latter subsequently reacts with tryptophan to form 5-hydroxytryptophan. The involvement of hydroxyl radicals is confirmed by use of ethanol and nitrous oxide as scavengers and their effects on the fluorescence yield in this system. It is postulated that such multiphoton ionization of tryptophanyl residues in cellular proteins may contribute to the photodamage observed during imaging of cells and tissues using multiphoton microscopy

    Time-resolved nanosecond fluorescence lifetime imaging and picosecond infrared spectroscopy of combretastatin A-4 in solution and in cellular systems

    Get PDF
    Fluorescence lifetime images of intrinsic fluorescence obtained with two-photon excitation at 630 nm are shown following uptake of a series of E-combretastatins into live cells, including human umbilical vein endothelial cells (HUVECs) that are the target for the anticancer activity of combretastatins. Images show distribution of the compounds within the cell cytoplasm and in structures identified as lipid droplets by comparison with images obtained following Nile red staining of the same cells. The intracellular fluorescent lifetimes are generally longer than in fluid solution as a consequence of the high viscosity of the cellular environment. Following incubation the intracellular concentrations of a fluorinated derivative of E combretastatin A4 in HUVECs are up to between 2 and 3 orders of magnitude higher than the concentration in the surrounding medium. Evidence is presented to indicate that at moderate laser powers (up to 6 mW) it is possible to isomerize up to 25% of the combretastatin within the femtolitre focal volume of the femtosecond laser beam. This suggests that it may be possible to activate the E-combretastatin (with low cellular toxicity) to the Z-isomer with high anticancer drug activity using two-photon irradiation. The isomerization of Z- and E-combretastatins by 266 nm irradiation has been probed by ultrafast time-resolved infrared spectroscopy. Results for the E-isomer show a rapid loss of excess vibrational energy in the excited state with a lifetime of 7 ps, followed by a slower process with a lifetime of 500 ps corresponding to the return to the ground state as also determined from the fluorescence lifetime. In contrast the Z-isomer, whilst also appearing to undergo a rapid cooling of the initial excited state, has a much shorter overall excited state lifetime of 14 ps

    Three-dimensional imaging and uptake of the anticancer drug combretastatin in cell spheroids and photoisomerization in gels with multiphoton excitation

    Get PDF
    The uptake of E-combretastatins, potential pro-drugs of the anticancer Z-isomers, into multicellular spheroids has been imaged by intrinsic fluorescence in three dimensions using two-photon excited fluorescence lifetime imaging with 625 nm ultrafast femtosecond laser pulses. Uptake is initially observed at the spheroid periphery but extends to the spheroid core within 30 minutes. Using agarose gels as a three-dimensional model, the conversion of Z(trans) E(cis) via two-photon photoisomerization is demonstrated and the location of this photochemical process may be selected precisely within the micron scale in all three dimensions at depths up to almost 2 mm. We discuss these results for enhanced tissue penetration at longer near-infrared wavelengths for cancer therapy and up to three-photon excitation and imaging using 930 nm laser pulses with suitable combretastatin analogues

    Fluorescence lifetime imaging of optically levitated aerosol: a technique to quantitatively map the viscosity of suspended aerosol particles

    Get PDF
    We describe a technique to measure the viscosity of stably levitated single micron-sized aerosol particles. Particle levitation allows the aerosol phase to be probed in the absence of potentially artefact-causing surfaces. To achieve this feat, we combined two laser based techniques: optical trapping for aerosol particle levitation, using a counter-propagating laser beam configuration, and fluorescent lifetime imaging microscopy (FLIM) of molecular rotors for the measurement of viscosity within the particle. Unlike other techniques used to measure aerosol particle viscosity, this allows for the non-destructive probing of viscosity of aerosol particles without interference from surfaces. The well-described viscosity of sucrose aerosol, under a range of relative humidity conditions, is used to validate the technique. Furthermore we investigate a pharmaceutically-relevant mixture of sodium chloride and salbutamol sulphate under humidities representative of in vivo\textit{in vivo} drug inhalation. Finally, we provide a methodology for incorporating molecular rotors into already levitated particles, thereby making the FLIM/optical trapping technique applicable to real world aerosol systems, such as atmospheric aerosols and those generated by pharmaceutical inhalers.European Research Council (Grant ID: 279405), Science and Technology Facilities Council (Central Laser Facility, Grant ID: LSF1207), Engineering and Physical Sciences Research Council (Grant ID: EP/I003983/1), Natural Environmental Research Council (Grant ID: NE/J500070/1

    An Expanded Multi-scale Monte Carlo Simulation Method for Personalized Radiobiological Effect Estimation in Radiotherapy: a feasibility study

    Get PDF
    A novel and versatile “bottom-up� approach is developed to estimate the radiobiological effect of clinic radiotherapy. The model consists of multi-scale Monte Carlo simulations from organ to cell levels. At cellular level, accumulated damages are computed using a spectrum-based accumulation algorithm and predefined cellular damage database. The damage repair mechanism is modeled by an expanded reaction-rate two-lesion kinetic model, which were calibrated through replicating a radiobiological experiment. Multi-scale modeling is then performed on a lung cancer patient under conventional fractionated irradiation. The cell killing effects of two representative voxels (isocenter and peripheral voxel of the tumor) are computed and compared. At microscopic level, the nucleus dose and damage yields vary among all nucleuses within the voxels. Slightly larger percentage of cDSB yield is observed for the peripheral voxel (55.0%) compared to the isocenter one (52.5%). For isocenter voxel, survival fraction increase monotonically at reduced oxygen environment. Under an extreme anoxic condition (0.001%), survival fraction is calculated to be 80% and the hypoxia reduction factor reaches a maximum value of 2.24. In conclusion, with biological-related variations, the proposed multi-scale approach is more versatile than the existing approaches for evaluating personalized radiobiological effects in radiotherapy
    • …
    corecore